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We analyze the electronic transport through a quantum dot that contains a magnetic impurity. The coherent transport of 
electrons is governed by the quantum confinement inside the dot, but is also influenced by the exchange interaction with the 
impurity. The interplay between the two gives raise to the singlet-triplet splitting of the energy levels available for the 
tunneling electron. In this paper, we focus on the charge fluctuations and, more precisely, the height of the conductance 
peaks. We show that the conductance peaks corresponding to the triplet levels are three times higher than those 
corresponding to singlet levels, if electronic correlations are neglected (for non-interacting dots, when an exact solution can 
be obtained). Next, we consider the Coulomb repulsion and the many-body correlations. In this case, the singlet/triplet peak 
height ratio has a complex behavior. Usually the highest peak corresponds to the state that is lowest in energy (ground 
state), regardless if it is singlet or triplet. In the end, we get an insight on the Kondo regime for such a system, and show the 
formation of three Kondo peaks. We use the equation of motion method with appropriate decoupling. 
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1. Introduction 
 
The quantum dots are zero-dimensional structures (so 

called artificial atoms) that are possible to be 
experimentally obtained and investigated individually, for 
some years now. An incoming electron may tunnel 
through a quantum dot only if its energy matches a dot 
energy level, so we have a single electron transistor [1]. 
Another interesting potential application is quantum 
computing using the spin of the quantum dot as 
information carrier [2]. The parameters that influence 
transmittance through a quantum dot (like the size of the 
dot or the hybridization with the leads) are much more 
easy to control comparing to the parameters of a bulk 
system, so one can test quantum theories in a way that was 
not possible before. We give as example the observation of 
the two-channel Kondo effect, described theoretically 
many years ago [3, 4], but realized experimentally only 
very recently, in a double-dot system [5] . 

In the last years, people have started to address the 
problem of quantum dots with magnetic impurities [6, 7, 8, 
9, 10, 11, 12], which is also the subject of the present 
paper. The transient electron feels the exchange interaction 
with the impurity and forms singlet/triplet entangled states 
before tunneling out of the dot. We analyze the way in 
which this physics is seen in transport. It will be shown 
that the peaks corresponding to the triplet levels are three 
times higher than those corresponding to singlet levels, if 
we neglect the Coulomb repulsion and electronic 
correlations in the dot. In large dots, with low 
confinement, the Coulomb repulsion is reduced, and the 
approximation to neglect it may still capture some 

important physics. Such a case will be addressed in 
Section II. 

The case of small quantum dots, with strong Coulomb 
repulsion is treated in Section III. If the Coulomb 
interaction and the many-body correlations are considered, 
the picture becomes more complex: the peak 
corresponding to the ground state is usually higher, 
regardless if it is singlet or triplet. The peaks height 
depends on the ratio J/Γ (exchange interaction versus 
coupling strength with the leads). An analytical formula is 
proposed for the transmittance and in particular for the 
singlet/triplet peak height ratio. In the end, we get an 
insight on the Kondo regime and show the formation of 
three Kondo peaks in the density of states. 

 
 
2. Large quantum dots with magnetic  
    impurities 
      
In this section we shall neglect all electron-electron 

interactions, except for the interaction with the magnetic 
impurity. The correlations are neglected as well, and they 
will be considered in the next section. The problem 
presented in this section is a two-electron scattering 
problem (one of which -the impurity- is fixed and may 
only change its spin orientation). 

If correlations are neglected, one can easily afford to 
consider a many-site dot, which is realistic from 
geometrical point of view. In (large) quantum dots with 
low confinement, the Coulomb repulsion is reduced, and 
this justifies the non-interacting model used here. A 
general lattice Hamiltonian, with a localized spin 
interaction, can be written as:  
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where  c
†
i  (ci) are creation (annihilation) operators in the 

dot sites indexed by i ; the index n is devoted to the site of 
the dot where the magnetic impurity is placed. σ,ijw  are 
hopping parameters (actually the hopping parameters are 
spin-independent and in the following we give up the spin 
index; moreover, they are considered only between nearest 
neighbors 〉〈 ji, ) and ijΦ  are the phases associated with 
an (eventually applied) magnetic field. The last two term 
account for the exchange interaction with the magnetic 
impurity [13]. 

From this point on, we take S=1/2. One can define the 
fermionic operators },,,{ ††

↓↑↓↑ dddd  for the localized 
spin (provided one projects out all the states with 
occupancy different from 1) 

Then, −+
nn

z
n andSSS ,  in eq (1) can be written as:  
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The natural formulation of the problem is in terms of 

singlet-triplet operators (see for instance [14]). Let us 
introduce the singlet operator Σi and the three triplet 

operators T
p
i  (p=1,2,3):  
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The above operators may be used in order to write the 

Hamiltonian (Eq.1) in the following way (where we have 

used also nd=d
†
↑d↑+d

†
↓d↓=1):  
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In order to analyze transport properties, one needs to 
connect leads to the quantum dot. The leads are modeled 
by a one-dimensional chain, consistent with the dot tight-
binding model. For the non-interacting dot (more 

precisely: the interaction is only with the magnetic 
impurity, and other electron-electron interactions and 
correlations are neglected), the introduction of leads is 
equivalent to the introduction of a complex selfenergy in 
the Hamiltonian, at the contact sites. The procedure is 
described in detail in [8]. It results the effective 
Hamiltonian: 
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We describe briefly the next steps. First, we employ 

the Landauer-Buttiker formula to connect the transmission 
through the dot with the retarded Green function [8] : 
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The above formula assumes equal coupling strength to the 
leads ( 0τ ) connected with the sites (states) α, α'. "S" 
stands for the spin state of the magnetic impurity that is 
changed to "S'" after the scattering. The electron spin is 
also changed from σ to σ' and only the transitions that 
conserve the total spin give non-zero transmittances. The 
parameter "q" is the impulse of the incident electron (see 
[8] and references therein for details about the dispersion 
formula in the leads and connection with the Landauer-
Buttiker formalism). 
At this point we remember that, for a single electron case, 
the retarded Green function is equal to the resolvent, and 
can be calculated by:  
 
                             .)()( 1−+ −= effHEEG                (7) 

 
The following definitions are introduced :  
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All triplet Green functions are equal (we give up the index 
"p") and the transmittance can be written:  
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 We show in Fig.1 the transmittance peaks for a quantum 
dot modeled by a 3x5 two-dimensional lattice. The 
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exchange interaction causes the singlet-triplet splitting of 
the spectrum and the conductance peaks. The triplet peaks 
have the hight 3/4 and the singlet peaks 1/4. For a realistic 
2D dot, certain eigenstates may be zero at the impurity 
position. Obviously, the corresponding transmittance 
peaks will not split. This case is also captured in Fig.1 (the 
"degenerate peaks" do not undergo the singlet-triplet 
splitting). 

 
 
Fig. 1. The conductance through a many-site quantum 
dot with a magnetic impurity, in the absence of electron-
electron interaction (only the interaction with the 
magnetic impurity is considered) . Some peaks split into 
triplet and singlet, with the heights 3/4 and 1/4, 
respectively. The peaks corresponding to trajectories that 
avoid the impurity do not split and remain degenerate. 
We show in Fig.1 the transmittance peaks for a quantum 
dot modeled by a 3×5 two-dimensional lattice. The 
exchange interaction causes the singlet-triplet splitting of 
the spectrum and the conductance peaks. The triplet 
peaks have the hight 3/4 and the singlet peaks 1/4. For a 
realistic 2D dot, certain eigenstates may be zero at the 
impurity position. Obviously, the corresponding 
transmittance peaks will not be splitted. This case is also 
captured  in   Fig. 1  (the  "degenerate  peaks"   do   not  
               undergo the singlet-triplet splitting). 

 
 

3. Small quantum dots with magnetic  
    impurities 
 
We saw in the previous section that the non-

interacting dot is easy to be modeled by a n×m lattice, but 
the problem becomes (technically) much more difficult 
when we include the Coulomb interaction. A general 
Hamiltonian, that includes the Coulomb interaction 
between any two electrons, can be written: : 
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ways to address such a complex Hamiltonian, that allows 
only approximate solutions with considerable difficulty. In 
this section, we shall restrict to the case of a single-site dot 
with Coulomb interaction and exchange interaction with a 
magnetic impurity. In comparison to the Hamiltonian 
Eq.1, we shall introduce the Coulomb interaction, but also 
we shall write explicitly, from the beginning, the 

Hamiltonian of the leads and the leads-dot hopping term. 
The reason is the following: in the previous section we 
used the effective Hamiltonian trick, meaning that leads 
are introduced by a selfenergy term in the coupling sites. 
But this is no longer possible if we consider electronic 
correlations or the Kondo effect, when the role of the leads 
is more complex. 

We re-write the Hamiltonian, in a convenient 
notation:  
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where the first term represents the electrons in the lead 
α=L, R. The second term stands for the electronic level 0ε  
in the dot. The next four terms describe interactions: the 
Coulomb interaction of electrons with the opposite spin 
orientation at the level 0ε  and exchange interactions with 
the magnetic impurity. The last term in the Hamiltonian 
(Eq.10) corresponds to the coupling between the quantum 
dot and the leads. It shall be considered, for simplicity, 

ttt RL == . 
Now, we want to determine the conductance for the model 
described by the Hamiltonian (Eq.10). The current can be 
expressed by means of the non-equilibrium Green 
functions as [15, 16] :  
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00∫ 〉〉〈〈−−Γ= ↑↑ ccwfwfdw
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where Γ=2πt2ρ and ρ=1/2D is the DOS for the square 
band approximation; the half-width D will be taken as 
unity.  fL and fR are the Fermi distribution functions in the 

left and right leads, respectively. 〉〉〈〈 ↑↑
†
00 | cc  is the 

retarded single particle Green function for an electron with 
the spin σ=↑ at the QD, which can be determined by the 
equation of motion (EOM). The generic EOM for the 
energy dependent retarded Green function is given by  
 
               ω〈〈A|B〉〉=〈{A,B}〉+〈〈[A,H]|B〉〉 , (12) 
 
where 〈{A,B}〉 is the thermal average of the 
anticommutator between the operators A and B. The 
procedure for solving the EOM for the retarded green 
functions was described in detail in [12]. Basically, the 
equations of motion introduce higher order Green 
functions, which result by performing the commutation 
(with the Hamiltonian) required by the formula above. For 
a finite system, even in the presence of interactions, one 
can write a finite number of independent equations and the 
system closes (even if sometimes the number of equations 
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is very big, it is still solvable). But for our case, interacting 
system + infinite leads, one has an infinite set of equations, 
and approximations are needed to close the system. 
 

 
 

Fig. 2. The height of the singlet and triplet peaks, that 
depend on the ratio J/Γ (exchange interaction versus 
coupling strength with the leads), if the Coulomb 
interaction and  electronic  correlations  are  considered.  

 
 

We propose the next approximation (that is valid at 
high temperatures [17])  
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It results a system of six equations (see [12]). The 

following solution is obtained for the conductance through 
the singlet and triplet peaks : 
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corresponds to the resonant conductance through the 
singlet and the triplet level, respectively, 

πε /]/)4/3arctan[( 0 Γ−−=Φ JEFS  and 

πε /]/)4/arctan[( 0 Γ+−=Φ JEFT . The fractions 

that multiply the resonances )(TSR  contain the 
information about the height of the conductance peaks. 
The ground and excited states role changes with the sign 
of J, and the dependence on the coupling also changes, 
being much more pronounced for the excited state. All 
these effects are incorporated in the above formula. 
By employing further the simplified form Eq.(14), one can 
estimate the ratio between the heights of the conductance 
for the singlet and triplet peaks. We notice that in Eq.(14), 
the parameter SΦ  vanishes at the singlet resonance 

(found with the condition 04/30 =−− JEFε ). TΦ  
vanishes at the triplet resonance. Therefore, one can 
straightforward calculate the ratio of the conductance 
peaks  
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where π/)/arctan(0 Γ=Φ J . Fig. 2 gives a graphical 
image of the peaks height dependence on the parameter 
J/Γ. For the antiferromagnetic coupling, the electronic 
transmission through the singlet state dominates and, in 
the limit J/Γ>>1, this ratio goes to infinity and the triplet 
peak disappears. In the case of the ferromagnetic coupling 
and |J|/Γ>>1, we have opposite situation - the singlet peak 
disappears from transport and only the peak corresponding 
to the triplet ground state is visible. 
 

 
Fig. 3. The density of states for a quantum dot with a 
magnetic impurity, in the Kondo regime. Notice the 
formation of three Kondo peaks, one at the Fermi energy 
(EF=0) and two  side  peaks  at  a distance  equal  to t he  

                     exchange interaction (J=0.3) . 
 
 

In the last part of the paper, we give a very brief 
analysis of the Kondo regime for the impurity dot. It is 
known that a Kondo peak in the density of states, at the 
Fermi energy, is present only if a degenerate level exists 
below the Fermy energy. This would allow for fluctuations 
(in the "classical" Kondo one has spin fluctuations), that 
involve also the electrons from the leads which, for this 
reason, can pass through the dot with increased 
probability. In our case, such a degenerate level would be 
the triplet and the system shows the central Kondo peak (at 
the Fermi energy). This central peak is important for 
transport, because at low temperature and low bias, 
practically only the electrons around the Fermy level 
contribute to the conductance. 

On the other hand, the singlet-triplet level structure 
should allow also the observation of side Kondo peaks, 
similar to the case of an applied magnetic field [20]. We 
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obtain a three-peaks Kondo structure and the typical 
density of states is plotted in Fig.3. The calculations were 
performed following the decoupling proposed in [18, 19] 
(see [12] for calculations details) for temperatures closed 
to the Kondo temperature. 

 
4. Conclusions 
 
In this paper, we present two models of quantum dots 

with magnetic impurities. The first model is a many-site 
lattice model (large quantum dots). It neglects the 
Coulomb interaction and many-body correlations, but can 
be used to model realistic geometries. In the absence of the 
magnetic impurity, the transmittance shows peaks with the 
height 1 (perfect transmittance). If a magnetic impurity is 
placed in the dot, one has triplet peaks with height 3/4 and 
singlet peaks with height 1/4. Some eigenstates inside the 
dot may avoid the impurity position, and the 
corresponding peaks do not split into singlet and triplet. 

The second model we propose is a single-site dot with 
Coulomb and exchange interactions. Here we give up the 
geometrical aspects, in order to focus on the correlations 
effects. Such a model is realistic for small quantum dots, 
where the Coulomb is strong and the level-spacing is 
large. The singlet and triplet conductance peaks are shown 
to depend on the ratio J/Γ (the exchange interaction versus 
the coupling strength with the leads). In particular, the 
transmission through the excited states depends strongly 
on the coupling to the leads. 

In the Kondo regime, the presence of the S=1/2 
magnetic impurity generates three Kondo peaks in the 
density of states. 
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