JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 10, No. 7, July 2008, p. 1754 - 1758

Transport through quantum dots with magnetic
Impurities
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We analyze the electronic transport through a quantum dot that contains a magnetic impurity. The coherent transport of
electrons is governed by the quantum confinement inside the dot, but is also influenced by the exchange interaction with the
impurity. The interplay between the two gives raise to the singlet-triplet splitting of the energy levels available for the
tunneling electron. In this paper, we focus on the charge fluctuations and, more precisely, the height of the conductance
peaks. We show that the conductance peaks corresponding to the triplet levels are three times higher than those
corresponding to singlet levels, if electronic correlations are neglected (for non-interacting dots, when an exact solution can
be obtained). Next, we consider the Coulomb repulsion and the many-body correlations. In this case, the singlet/triplet peak
height ratio has a complex behavior. Usually the highest peak corresponds to the state that is lowest in energy (ground
state), regardless if it is singlet or triplet. In the end, we get an insight on the Kondo regime for such a system, and show the

formation of three Kondo peaks. We use the equation of motion method with appropriate decoupling.
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1. Introduction

The quantum dots are zero-dimensional structures (so
called artificial atoms) that are possible to be
experimentally obtained and investigated individually, for
some years now. An incoming electron may tunnel
through a quantum dot only if its energy matches a dot
energy level, so we have a single electron transistor [1].
Another interesting potential application is quantum
computing using the spin of the quantum dot as
information carrier [2]. The parameters that influence
transmittance through a quantum dot (like the size of the
dot or the hybridization with the leads) are much more
easy to control comparing to the parameters of a bulk
system, so one can test quantum theories in a way that was
not possible before. We give as example the observation of
the two-channel Kondo effect, described theoretically
many years ago [3, 4], but realized experimentally only
very recently, in a double-dot system [5] .

In the last years, people have started to address the
problem of quantum dots with magnetic impurities [6, 7, 8,
9, 10, 11, 12], which is also the subject of the present
paper. The transient electron feels the exchange interaction
with the impurity and forms singlet/triplet entangled states
before tunneling out of the dot. We analyze the way in
which this physics is seen in transport. It will be shown
that the peaks corresponding to the triplet levels are three
times higher than those corresponding to singlet levels, if
we neglect the Coulomb repulsion and electronic
correlations in the dot. In large dots, with low
confinement, the Coulomb repulsion is reduced, and the
approximation to neglect it may still capture some

important physics. Such a case will be addressed in
Section II.

The case of small quantum dots, with strong Coulomb
repulsion is treated in Section III. If the Coulomb
interaction and the many-body correlations are considered,
the picture becomes more complex: the peak
corresponding to the ground state is usually higher,
regardless if it is singlet or triplet. The peaks height
depends on the ratio J/I' (exchange interaction versus
coupling strength with the leads). An analytical formula is
proposed for the transmittance and in particular for the
singlet/triplet peak height ratio. In the end, we get an
insight on the Kondo regime and show the formation of
three Kondo peaks in the density of states.

2. Large quantum dots with magnetic
impurities

In this section we shall neglect all electron-electron
interactions, except for the interaction with the magnetic
impurity. The correlations are neglected as well, and they
will be considered in the next section. The problem
presented in this section is a two-electron scattering
problem (one of which -the impurity- is fixed and may
only change its spin orientation).

If correlations are neglected, one can easily afford to
consider a many-site dot, which is realistic from
geometrical point of view. In (large) quantum dots with
low confinement, the Coulomb repulsion is reduced, and
this justifies the non-interacting model used here. A
general lattice Hamiltonian, with a localized spin
interaction, can be written as:
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where cj (Ci) are creation (annihilation) operators in the

dot sites indexed by i ; the index 7 is devoted to the site of

the dot where the magnetic impurity is placed. W, are

hopping parameters (actually the hopping parameters are
spin-independent and in the following we give up the spin
index; moreover, they are considered only between nearest

neighbors (i, j)) and @, are the phases associated with
an (eventually applied) magnetic field. The last two term
account for the exchange interaction with the magnetic
impurity [13].

From this point on, we take S=1/2. One can define the

fermionic operators {d;,di,dmd ) for the localized

spin (provided one projects out all the states with
occupancy different from 1)

Then, S° S+andS

n in eq (1) can be written as:
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The natural formulation of the problem is in terms of
singlet-triplet operators (see for instance [14]). Let us
introduce the singlet operator Zl. and the three triplet

operators Tf (p=1,2,3):
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The above operators may be used in order to write the
Hamiltonian (Eq.1) in the following way (where we have

used also n d:dj;dT+d1d ‘L:l):
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In order to analyze transport properties, one needs to
connect leads to the quantum dot. The leads are modeled
by a one-dimensional chain, consistent with the dot tight-
binding model. For the non-interacting dot (more

precisely: the interaction is only with the magnetic
impurity, and other electron-electron interactions and
correlations are neglected), the introduction of leads is
equivalent to the introduction of a complex selfenergy in
the Hamiltonian, at the contact sites. The procedure is
described in detail in [8]. It results the -effective
Hamiltonian:
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We describe briefly the next steps. First, we employ
the Landauer-Buttiker formula to connect the transmission
through the dot with the retarded Green function [8] :

T, ys.s(E)=4tysin’ ¢ (@, S| G, (E)| &', ) [ .
(6)

The above formula assumes equal coupling strength to the
leads (7,) connected with the sites (states) a, a'. "S"

stands for the spin state of the magnetic impurity that is
changed to "S™ after the scattering. The electron spin is
also changed from o to o' and only the transitions that
conserve the total spin give non-zero transmittances. The
parameter "¢" is the impulse of the incident electron (see
[8] and references therein for details about the dispersion
formula in the leads and connection with the Landauer-
Buttiker formalism).

At this point we remember that, for a single electron case,
the retarded Green function is equal to the resolvent, and
can be calculated by:

G(E)=(E-H")". @)
The following definitions are introduced :
G, (E)=(E-H]")",

G, (E)=(E-H]')" ®)

All triplet Green functions are equal (we give up the index
"p") and the transmittance can be written:

. | S, 3,
T = 2. Trss (B)=4055in" g | GH(E)F +7 1 G(ED D).
)

We show in Fig.1 the transmittance peaks for a quantum
dot modeled by a 3x5 two-dimensional lattice. The
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exchange interaction causes the singlet-triplet splitting of
the spectrum and the conductance peaks. The triplet peaks
have the hight 3/4 and the singlet peaks 1/4. For a realistic
2D dot, certain eigenstates may be zero at the impurity
position. Obviously, the corresponding transmittance
peaks will not split. This case is also captured in Fig.1 (the
"degenerate peaks" do not undergo the singlet-triplet
splitting).
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Fig. 1. The conductance through a many-site quantum
dot with a magnetic impurity, in the absence of electron-
electron interaction (only the interaction with the
magnetic impurity is considered) . Some peaks split into
triplet and singlet, with the heights 3/4 and 1/4,
respectively. The peaks corresponding to trajectories that
avoid the impurity do not split and remain degenerate.
We show in Fig.1 the transmittance peaks for a quantum
dot modeled by a 3x5 two-dimensional lattice. The
exchange interaction causes the singlet-triplet splitting of
the spectrum and the conductance peaks. The triplet
peaks have the hight 3/4 and the singlet peaks 1/4. For a
realistic 2D dot, certain eigenstates may be zero at the
impurity  position.  Obviously, the corresponding
transmittance peaks will not be splitted. This case is also
captured in Fig. 1 (the "degenerate peaks" do not
undergo the singlet-triplet splitting).

3. Small quantum dots with magnetic
impurities

We saw in the previous section that the non-
interacting dot is easy to be modeled by a nxm lattice, but
the problem becomes (technically) much more difficult
when we include the Coulomb interaction. A general
Hamiltonian, that includes the Coulomb interaction
between any two electrons, can be written:

H=Hg+ Z U, cl e cl c.

1.7CicCioC o j’a,.There are several

i,j,o,0"
ways to address such a complex Hamiltonian, that allows
only approximate solutions with considerable difficulty. In
this section, we shall restrict to the case of a single-site dot
with Coulomb interaction and exchange interaction with a
magnetic impurity. In comparison to the Hamiltonian
Eq.1, we shall introduce the Coulomb interaction, but also
we shall write explicitly, from the beginning, the

Hamiltonian of the leads and the leads-dot hopping term.
The reason is the following: in the previous section we
used the effective Hamiltonian trick, meaning that leads
are introduced by a selfenergy term in the coupling sites.
But this is no longer possible if we consider electronic
correlations or the Kondo effect, when the role of the leads
is more complex.

We re-write the Hamiltonian,
notation:

in a convenient

t T f t
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where the first term represents the electrons in the lead
o=L, R. The second term stands for the electronic level &,

in the dot. The next four terms describe interactions: the
Coulomb interaction of electrons with the opposite spin

orientation at the level &, and exchange interactions with

the magnetic impurity. The last term in the Hamiltonian
(Eq.10) corresponds to the coupling between the quantum
dot and the leads. It shall be considered, for simplicity,

t, =ty =t.

Now, we want to determine the conductance for the model
described by the Hamiltonian (Eq.10). The current can be
expressed by means of the non-equilibrium Green
functions as [15, 16] :

=2 [l 1,00 = FuI-TmCeys [eo))

an
where T :2nt2p and p=1/2D is the DOS for the square

band approximation; the half-width D will be taken as
unity. fL and fR are the Fermi distribution functions in the

left and right leads, respectively. ({c, |ch )Y is the

retarded single particle Green function for an electron with
the spin 6=T at the QD, which can be determined by the
equation of motion (EOM). The generic EOM for the
energy dependent retarded Green function is given by

o{dB)={4.B)+([4.H]B)) ,  (12)

where ({4,B}) 1is the thermal average of the
anticommutator between the operators A and B. The
procedure for solving the EOM for the retarded green
functions was described in detail in [12]. Basically, the
equations of motion introduce higher order Green
functions, which result by performing the commutation
(with the Hamiltonian) required by the formula above. For
a finite system, even in the presence of interactions, one
can write a finite number of independent equations and the
system closes (even if sometimes the number of equations
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is very big, it is still solvable). But for our case, interacting
system + infinite leads, one has an infinite set of equations,
and approximations are needed to close the system.

Peak haight (28°h)

Fig. 2. The height of the singlet and triplet peaks, that
depend on the ratio J/I" (exchange interaction versus
coupling strength with the leads), if the Coulomb
interaction and electronic correlations are considered.

We propose the next approximation (that is valid at
high temperatures [17])

20y << Aleh, >>~ =il << ¢, Alc}, >>
k

(13)

It results a system of six equations (see [12]). The

following solution is obtained for the conductance through
the singlet and triplet peaks :

GGG = 1420, 3(14+20,)
ST 23440, —4DD,) T 2(3+4D 4D D)
(14)

where Ry =(2e* /W) /[T? +(E, —e, +3J/4)*]
and R, =" /M /[T +(E, —e,—J /4)*]

corresponds to the resonant conductance through the
singlet ~and the triplet level, respectively,

@ =arctan[(e, —E. -3J/4)/T]/n and
@, =arctan[(g, —E, +J/4)/I']/ 7z . The fractions

that multiply the resonances RS(T) contain the

information about the height of the conductance peaks.
The ground and excited states role changes with the sign
of J, and the dependence on the coupling also changes,
being much more pronounced for the excited state. All
these effects are incorporated in the above formula.

By employing further the simplified form Eq.(14), one can
estimate the ratio between the heights of the conductance
for the singlet and triplet peaks. We notice that in Eq.(14),

the parameter @ vanishes at the singlet resonance

(found with the condition &, —E, —3J/4=0). ®,

vanishes at the triplet resonance. Therefore, one can
straightforward calculate the ratio of the conductance
peaks

max[Gy]  (14+20,)(3—4D,)
o 91-20,)

(15)

max|[G, ]

where @, =arctan(J /I")/ 7. Fig. 2 gives a graphical

image of the peaks height dependence on the parameter
JIT. For the antiferromagnetic coupling, the electronic
transmission through the singlet state dominates and, in
the limit J/I">>1, this ratio goes to infinity and the triplet
peak disappears. In the case of the ferromagnetic coupling
and |J]/T’>>1, we have opposite situation - the singlet peak
disappears from transport and only the peak corresponding
to the triplet ground state is visible.
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Fig. 3. The density of states for a quantum dot with a
magnetic impurity, in the Kondo regime. Notice the
formation of three Kondo peaks, one at the Fermi energy
(EF:O) and two side peaks at a distance equal to t he

exchange interaction (J=0.3) .

In the last part of the paper, we give a very brief
analysis of the Kondo regime for the impurity dot. It is
known that a Kondo peak in the density of states, at the
Fermi energy, is present only if a degenerate level exists
below the Fermy energy. This would allow for fluctuations
(in the "classical" Kondo one has spin fluctuations), that
involve also the electrons from the leads which, for this
reason, can pass through the dot with increased
probability. In our case, such a degenerate level would be
the triplet and the system shows the central Kondo peak (at
the Fermi energy). This central peak is important for
transport, because at low temperature and low bias,
practically only the electrons around the Fermy level
contribute to the conductance.

On the other hand, the singlet-triplet level structure
should allow also the observation of side Kondo peaks,
similar to the case of an applied magnetic field [20]. We
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obtain a three-peaks Kondo structure and the typical
density of states is plotted in Fig.3. The calculations were
performed following the decoupling proposed in [18, 19]
(see [12] for calculations details) for temperatures closed
to the Kondo temperature.

4. Conclusions

In this paper, we present two models of quantum dots
with magnetic impurities. The first model is a many-site
lattice model (large quantum dots). It neglects the
Coulomb interaction and many-body correlations, but can
be used to model realistic geometries. In the absence of the
magnetic impurity, the transmittance shows peaks with the
height 1 (perfect transmittance). If a magnetic impurity is
placed in the dot, one has triplet peaks with height 3/4 and
singlet peaks with height 1/4. Some eigenstates inside the
dot may avoid the impurity position, and the
corresponding peaks do not split into singlet and triplet.

The second model we propose is a single-site dot with
Coulomb and exchange interactions. Here we give up the
geometrical aspects, in order to focus on the correlations
effects. Such a model is realistic for small quantum dots,
where the Coulomb is strong and the level-spacing is
large. The singlet and triplet conductance peaks are shown
to depend on the ratio J/T" (the exchange interaction versus
the coupling strength with the leads). In particular, the
transmission through the excited states depends strongly
on the coupling to the leads.

In the Kondo regime, the presence of the S=1/2
magnetic impurity generates three Kondo peaks in the
density of states.

The work was supported as a part of ESF
EUROCORES Programme FoNE by funds from Ministry
of Science and Higher Education (Poland) and EC 6FP
(contract N. ERAS-CT-2003-980409), and EC project
RTNNANO (contract N. MRTN-CT-2003-504574). M.T
and A.A. acknowledge support from the Romanian
excellence programme CEEX D-11-45.

References

[11 M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).
[2] D. Loss, D. P. DiVincenzo, Phys. Rev. A 57, 120
(1999).

[3] P. Nozieres and A. Blandin, J. Phys. 41 193(1980);

[4] A. Zawadowski, Phys. Rev. Lett. 45 211 (1980).

[5]R.M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, D.
Goldhaber-Gordon, Nature 446, 167 (2007).

[6] A. O. Govorov, Phys. Rev. B 70, 035321 (2004).

[7] G. Murthy, Phys. Rev. Lett. 94, 126803 (2005).

[8] A. Aldea, M. Tolea, J. Zittartz, Physica E 28, 191
(2005).

[9] H. B. Heersche, Z. de Groot, J. A. Folk, L. P.
Kouwenhoven, H. S. J. van der Zant, A. A. Houck, J.
Labaziewicz, I. L. Chuang Phys. Rev. Lett. 96,

017205 (2006).

[10] R. K. Kaul, G. Zarand, S. Chandrasekharan, D.
Ullmo, H. U. Baranger, Phys. Rev. Lett. 96, 176802
(2006).

[11]J. Fernandez-Rossier, R. Aguado, Phys. Rev. Lett.
98, 106805 (2007).

[12] M. Tolea, B.R. Bulka, Phys.Rev.B 75,

125301 (2007).

1
[13] The sign convention and the 1/2 factor ("+ E‘]") are

different from Ref. [8], in order to use a unified
notation throughout this paper.

[14] G.Horwitz, S.Alexander, M.Fibich, Phys.Rev.
168, 495 (1968).

[15] Y.Meir, N.S. Wingreen, Phys. Rev. Lett.
68, 2512 (1992).

[16] H. Haug, A.-P. Jauho, Quantum Kinetics in Transport
and Optics (Springer-Verlag, Berlin, 1998).

[17] B. R. Buifka, T. Kostyrko, Phys. Rev. B 70, 205333
(2004).

[18] C. Lacroix, J. Phys. F: Metal Phys. 11, 2389 (1981).

[19] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev.
Lett. 66, 3048 (1991).

[20] Y. Meir, N. S. Wingreen, P. A. Lee, Phys. Rev. Lett.
70,2601 (1993).

*Corresponding author: tzolea@infim.ro



